【題目】為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:
根據以上統計圖,解答下列問題:
(1)本次接受調查的市民共有 人;
(2)扇形統計圖中,扇形B的圓心角度數是 ;
(3)請補全條形統計圖;
(4)若該市“上班族”約有15萬人,請估計乘公交車上班的人數.
【答案】(1)200;(2)43.2°;(3)條形統計圖如圖所示:見解析;(4)估計乘公交車上班的人數為6萬人.
【解析】
(1)根據D組人數以及百分比計算即可.
(2)根據圓心角度數=360°×百分比計算即可.
(3)求出A,C兩組人數畫出條形圖即可.
(4)利用樣本估計總體的思想解決問題即可.
(1)本次接受調查的市民共有:50÷25%=200(人),
故答案為200.
(2)扇形統計圖中,扇形B的圓心角度數=360°×=43.2°;
故答案為:43.2°
(3)C組人數=200×40%=80(人),A組人數=200﹣24﹣80﹣50﹣16=30(人).
條形統計圖如圖所示:
(4)15×40%=6(萬人).
答:估計乘公交車上班的人數為6萬人.
科目:初中數學 來源: 題型:
【題目】某玩具商店以每件60元為成本購進一批新型玩具,以每件100元的價格銷售則每天可賣出20件,為了擴大銷售,增加盈利,盡快減少庫存,商店決定采取適當的降價措施,經調查發現:若每件玩具每降價1元,則每天可多賣2件.
(1)若商店打算每天盈利1200元,每件玩具的售價應定為多少元?
(2)若商店為追求效益最大化,每件玩具的售價定為多少元時,商店每天盈利最多?最多盈利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】手機微信推出了紅包游戲,它有多種玩法,其中一種為“拼手氣紅包”,用戶設好總金額以及紅包個數后,可以生成不等金額的紅包,現有一用戶發了三個“拼手氣紅包”,總金額為3元,隨機被甲、乙、丙三人搶到.
(1)下列事件中,確定事件是 ,①丙搶到金額為1元的紅包;②乙搶到金額為4元的紅包;③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多
(2)記金額最多、居中、最少的紅包分別為A,B,C.求甲搶到紅包A,乙搶到紅包C的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩名同學在一次用頻率估計概率的試驗中統計了某一結果出現的頻率,繪制出統計圖如圖所示,則符合這一結果的試驗可能是( )
A.拋一枚硬幣,正面朝上的概率
B.擲一枚正六面體的骰子,出現點的概率
C.轉動如圖所示的轉盤,轉到數字為奇數的概率
D.從裝有個紅球和
個藍球的口袋中任取一個球恰好是藍球的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F在同一條直線上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F分別為DC,BC邊上的點,且∠EAF=
∠DAB.試猜想DE,BF,EF之間有何數量關系,并證明你的猜想.
⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由)
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了提高學生的綜合素質,成立了以下社團:.機器人,
.圍棋,
.羽毛球,
.電影配音.每人只能加入一個社團.為了解學生參加社團的情況,從加社團的學生中隨機抽取了部分學生進行調查,并將調查結果繪制成如下兩幅不完整的統計圖,其中圖
中
所占扇形的圓心角為
.
根據以上信息,解答下列問題:
這次被調查的學生共有 人;
請你將條形統計圖補充完整;
若該校共有
學生加入了社團,請你估計這
名學生中有多少人參加了羽毛球社團;
在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現優秀,現決定從這四人中任選兩名參加機器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】臨近端午,某超市準備購進某品牌的白粽、豆沙粽、蛋黃粽,三種品種的粽子共1000袋(每袋均為同一品種的粽子),其中白粽每袋12個,豆沙粽每袋8個,蛋黃粽每袋6個.為了推廣,超市還計劃將三個品種的粽子各取出來,拆開后重新組合包裝,制成A、B兩種套裝進行特價銷售:A套裝為每袋白粽4個,豆沙粽4個;B套裝為每袋白粽4個,蛋黃粽2個,取出的袋數和套裝的袋數均為正整數.若蛋黃粽的進貨量不低于總進貨量的
,則豆沙粽最多購進__袋.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“三等分角”是數學史上一個著名的問題,但僅用尺規不可能“三等分角”.下面是數學家帕普斯借助函數給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(,
)、R(
,
),求直線OM對應的函數表達式(用含
,
的代數式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB;
(3)應用上述方法得到的結論,你如何三等分一個鈍角(用文字簡要說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC(頂點是網格線的交點)
(1)將△ABC向左平移1個單位,再向上平移5個單位件到△A1B1C1請畫出△A1B1C1
(2)請在網格中將△ABC以A為位似中心放大3倍,得△AB2C2,請畫出△AB2C2
(3)△A1B1C1和△AB2C2的面積比為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com