【題目】下列說法正確的是( )
A.,“
”是“
”的必要不充分條件
B.“為真命題”是“
為真命題”的必要不充分條件
C.命題“”的否定是:“
使得
”
D.命題p:“”,則
是真命題
科目:高中數學 來源: 題型:
【題目】在三棱錐P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,則三棱錐P﹣ABC體積的最大值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長等于2正方形中,點Q是
中點,點M,N分別在線段
上移動(M不與A,B重合,N不與C,D重合),且
,沿著
將四邊形
折起,使得二面角
為直二面角,則三棱錐
體積的最大值為________;當三棱錐
體積最大時,其外接球的表面積為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖一所示,四邊形是邊長為
的正方形,沿
將
點翻折到
點位置(如圖二所示),使得二面角
成直二面角.
,
分別為
,
的中點.
(1)求證:;
(2)求平面與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是公差為1的等差數列,
是單調遞增的等比數列,且
,
,
.
(1)求和
的通項公式;
(2)設,數列
的前
項和
,求
;
(3)若數列的前
項積為
,求
.
(4)數列滿足
,
,其中
,
,求
.
(5)解決數列問題時,經常需要先研究陌生的通項公式,只有先把通項公式研究明白,然后盡可能轉化為我們熟悉的數列問題,由此使問題得到解決.通過對上面(2)(3)(4)問題的解決,你認為研究陌生數列的通項問題有哪些常用方法,要求介紹兩個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形中,
,以
為折痕把
折起,使點
到達點
的位置,且
.
(1)證明:平面
;
(2)若為
的中點,二面角
等于60°,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數,
為直線
的傾斜角),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的直角坐標方程,并求
時直線
的普通方程;
(2)若直線和曲線
交于兩點
,點
的直角坐標為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com