精英家教網 > 高中數學 > 題目詳情

若定義在上的函數同時滿足:①;②;③若,且,則成立.則稱函數為“夢函數”.
(1)試驗證在區間上是否為“夢函數”;
(2)若函數為“夢函數”,求的最值.

(1)在區間上是“夢函數”;(2)

解析試題分析:(1)緊扣定義只需驗證在區間上①②③是否成立;(2)先利用性質③證明函數在區間上單調遞增,最后利用賦值法即可求得的最大最小值.
試題解析:(1)顯然①;②;                     2分
③若
在區間上是“夢函數”.                      6分
(2)
所以函數在區間上單調遞增.
.              12分
考點:函數的性質(單調性與最值).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知點直線AM,BM相交于點M,且.
(1)求點M的軌跡的方程;
(2)過定點(0,1)作直線PQ與曲線C交于P,Q兩點,且,求直線PQ的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,的定義域為 
(1)求的值;
(2)若函數在區間上是單調遞減函數,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 滿足
(1)求常數的值 ;
(2)解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
(1)對于函數,當時,,求實數的取值集合;
(2)當時,的值為負,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求上的最小值;
(2)若函數上為增函數,求正實數的取值范圍;
(3)若關于的方程在區間內恰有兩個相異的實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中e為自然對數的底數,且當x>0時恒成立.
(Ⅰ)求的單調區間;
(Ⅱ)求實數a的所有可能取值的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值,且恰好是的一個零點.
(Ⅰ)求實數的值,并寫出函數的單調區間;
(Ⅱ)設分別是曲線在點(其中)處的切線,且
①若的傾斜角互補,求的值;
②若(其中是自然對數的底數),求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若函數的最小值為,求的最大值;
(3)若函數的最小值為,定義域內的任意兩個值,試比較  的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视