【題目】過橢圓的左頂點
作斜率為2的直線,與橢圓的另一個交點為
,與
軸的交點為
,已知
.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點
,且與直線
相交于點
,若
軸上存在一定點
,使得
,求橢圓的方程.
【答案】(1);(2)
.
【解析】
試題分析:(I)根據,設直線方程為
,
確定的坐標,由
確定得到
,
再根據點在橢圓上,求得
進一步即得所求
;
(2)由可設
,
得到橢圓的方程為,
由得
根據動直線與橢圓有且只有一個公共點P
得到,整理得
.
確定的坐標
,
又,
若軸上存在一定點
,使得
,那么
可得,由
恒成立,故
,得解.
試題解析:(1)∵
,設直線方程為
,
令,則
,∴
, 2分
∴ 3分
∵,∴
=
,
整理得 4分
∵點在橢圓上,∴
,∴
5分
∴即
,∴
6分
(2)∵可設
,
∴橢圓的方程為 7分
由得
8分
∵動直線與橢圓有且只有一個公共點P
∴,即
整理得 9分
設
則有
,
∴ 10分
又,
若軸上存在一定點
,使得
,
∴恒成立
整理得, 12分
∴恒成立,故
所求橢圓方程為 13分
科目:高中數學 來源: 題型:
【題目】某景區修建一棟復古建筑,其窗戶設計如圖所示.圓的圓心與矩形
對角線的交點重合,且圓與矩形上下兩邊相切(
為上切點),與左右兩邊相交(
,
為其中兩個交點),圖中陰影部分為不透光區域,其余部分為透光區域.已知圓的半徑為1
,且
,設
,透光區域的面積為
.
(1)求關于
的函數關系式,并求出定義域;
(2)根據設計要求,透光區域與矩形窗面的面積比值越大越好.當該比值最大時,求邊的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小區抽取50戶居民進行月用電量調查,發現其用電量都在50到350度之間,頻率分布直方圖如圖1.
A類用戶 | B類用戶 | |||||||
9 | 7 | 7 | 0 | 6 | ||||
8 | 6 | 5 | 1 | 7 | 8 | 9 | ||
9 | 8 | 2 | 8 | 5 | 6 | 7 | 8 | |
8 | 7 | 1 | 0 | 9 | 7 | 8 | 9 |
圖2
(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;(2)若將用電量在區間
內的用戶記為
類用戶,標記為低用電家庭,用電量在區間
內的用戶記為
類用戶,標記為高用電家庭,現對這兩類用戶進行問卷調查,讓其對供電服務進行打分,打分情況見莖葉圖2;若打分超過85分視為滿意,沒超過85分視為不滿意,請填寫下面列聯表,并根據列聯表判斷是否有
的把握認為“滿意度與用電量高低有關”?
滿意 | 不滿意 | 合計 | |
| |||
| |||
合計 |
附表及公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠甲、乙兩個車間包裝同一種產品,在自動包裝傳送帶上每隔一小時抽一包產品,稱其重量(單位:克)是否合格,分別記錄抽查數據,獲得重量數據莖葉如圖所示.
(Ⅰ)根據樣本數據,計算甲、乙兩個車間產品重量的均值與方差,并說明哪個車間的產品的重量相對穩定;
(Ⅱ)若從乙車間件樣品中隨機抽取兩件,求所抽取兩件樣品重量之差不超過
克的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com