江蘇省丹陽高級中學高三第一次摸底考試數學試卷  2009-3-8

必做題部分(滿分160分)

一、填空題:本大題共14小題,每小題5分,共70分。

1、若,則=__________。

試題詳情

2、設,若的充分不必要條件,則實數的取值范圍是_______________。

試題詳情

3、已知復數,,那么=______________。

試題詳情

4、若角的終邊落在射線上,則=____________。

試題詳情

5、在數列中,若,,則該數列的通項為         

試題詳情

6、甲、乙兩名射擊運動員參加某大型運動會的預選賽,他們分別射擊了5次,成績如下表(單位:環)

10

8

9

9

9

10

10

7

9

9

如果甲、乙兩人中只有1人入選,則入選的最佳人選應是      

試題詳情

7、在閉區間 [-1,1]上任取兩個實數,則它們的和不大于1的概率是               。

試題詳情

8、已知對稱中心為原點的雙曲線與橢圓有公共的焦點,且它們的離心率互為倒數,則該橢圓的標準方程為___________________。

試題詳情

輸出的結果是      

試題詳情

10、給出下列四個命題,其中不正確命題的序號是       。

試題詳情

①若;②函數的圖象關于x=對稱;③函數為偶函數,④函數是周期函數,且周期為2。

試題詳情

試題詳情

11、若函數上是增函數,則的取值范圍是____________。

試題詳情

12、設,則的最大值是_________________。

試題詳情

13、棱長為1的正方體中,若E、G分別為、的中點,F是正方

試題詳情

的中心,則空間四邊形BGEF在正方體的六個面內射影的面積的最大值為      。

試題詳情

14、已知平面上的向量、滿足,,設向量,則的最小值是                 。

試題詳情

二、解答題:本大題共6小題,共90分。

15、設函數,其中向量,

試題詳情

(1)求的最小正周期;

試題詳情

(2)在中,分別是角的對邊,的值。

試題詳情

試題詳情

16、已知某幾何體的三視圖如下圖所示,其中左視圖是邊長為2的正三角形,主視圖是矩

試題詳情

形,且 ,設的中點。          www.gongchengfu.com

試題詳情

(1)作出該幾何體的直觀圖并求其體積;

試題詳情

(2)求證:平面平面;

試題詳情

(3)邊上是否存在點,使平面?若不存在,說明理由;若存在,證明你的結論。

試題詳情

 

試題詳情

17、某商店經銷一種奧運會紀念品,每件產品的成本為30元,并且每賣出一件產品需向稅

試題詳情

務部門上交元(為常數,2≤a≤5 )的稅收。設每件產品的售價為x元(35≤x≤41),

試題詳情

根據市場調查,日銷售量與(e為自然對數的底數)成反比例。已知每件產品的日售價為40

元時,日銷售量為10件。

試題詳情

(1)求該商店的日利潤L(x)元與每件產品的日售價x元的函數關系式;

試題詳情

(2)當每件產品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值。

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

18、已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切。

試題詳情

(1)求橢圓的方程;

試題詳情

(2)設橢圓 的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為點,線段的垂直平分線交于點,求點的軌跡的方程;

試題詳情

(3)設軸交于點,不同的兩點上,且滿足,求的取值范圍。

試題詳情

試題詳情

試題詳情

19、已知數列中,且點在直線上。

試題詳情

(1)求數列的通項公式;

試題詳情

(2)若函數求函數的最小值;

試題詳情

(3)設表示數列的前項和。試問:是否存在關于的整式,使得

試題詳情

對于一切不小于2的自然數恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

試題詳情

試題詳情

 

試題詳情

20、已知,其中是自然常數,

試題詳情

(1)討論時, 的單調性、極值;

試題詳情

(2)求證:在(1)的條件下,;

試題詳情

(3)是否存在實數,使的最小值是3,如果存在,求出的值;如果不存在,說明理由。

試題詳情

試題詳情

試題詳情

必做題答案

試題詳情

一、填空題:

1、   2、   3、    4、0    5、    6、甲   7、      8、       9、2,5,10     10、1,2,4       11、   12、1     13、   14、2

試題詳情

二、解答題:

15、解:(1)-------------------------------3分

試題詳情

--------------------------------------------------------------------------------------6分

試題詳情

(2)--------------------------------------------------------------------------------9分

試題詳情

余弦定理可得-----------------------------------------------------12分

試題詳情

又∵,∴----------------------------14分

試題詳情

16、

試題詳情

 

試題詳情

17、解(1)設日銷售量為-------2分

試題詳情

則日利潤----------------------------4分

試題詳情

(2)-------------------------------------------------7分

試題詳情

①當2≤a≤4時,33≤a+31≤35,當35 <x<41時,

試題詳情

∴當x=35時,L(x)取最大值為-----------------------------------10分

試題詳情

②當4<a≤5時,35≤a+31≤36,

試題詳情

易知當x=a+31時,L(x)取最大值為-----------------------------------13分

試題詳情

綜合上得---------- ------------------------15分

試題詳情

18、解:(1)由,又由直線與圓相切,得,,∴橢圓的方程為:。---------------------------------4分

試題詳情

(2)由得動點的軌跡是以為準線,為焦點的拋物線,∴點的軌跡的方程為。-----------------------------------------------------------------------8分

試題詳情

(3),設,

試題詳情

試題詳情

,得,∵

試題詳情

∴化簡得,---------------------------------------------------------------------10分

試題詳情

(當且僅當時等號成立),

試題詳情

,

試題詳情

又∵,∴當,即,

試題詳情

的取值范圍是-----------------------------------------------------------15分

試題詳情

19、解:(1)由點P在直線上,

試題詳情

,------------------------------------------------------------------------2分

試題詳情

,數列{}是以1為首項,1為公差的等差數列

試題詳情

   ,同樣滿足,所以---------------4分

試題詳情

  (2)

試題詳情

      ---------------------6分

試題詳情

     

試題詳情

     所以是單調遞增,故的最小值是-----------------------10分

試題詳情

(3),可得-------12分

試題詳情

     ,

試題詳情

……

試題詳情

試題詳情

試題詳情

,n≥2------------------14分

試題詳情

故存在關于n的整式g(x)=n,使得對于一切不小于2的自然數n恒成立----16分

試題詳情

20、解(1)    ------------2分

試題詳情

時,,此時為單調遞減

試題詳情

時,,此時為單調遞增

試題詳情

的極小值為-----------------------------------------4分

試題詳情

(2)的極小值,即的最小值為1

試題詳情

    令

試題詳情

    --------------------------------------------6分

試題詳情

試題詳情

上單調遞減

試題詳情

 ---------------7分

試題詳情

時,------------------------------8分

試題詳情

(3)假設存在實數,使有最小值3,

試題詳情

試題詳情

①當時,由于,則

試題詳情

函數上的增函數

試題詳情

試題詳情

解得(舍去) ---------------------------------12分

試題詳情

②當時,則當時,

試題詳情

此時是減函數

試題詳情

時,,此時是增函數

試題詳情

試題詳情

解得 -----------------------------------------------------------------16分

 

 

 

試題詳情


同步練習冊答案
久久精品免费一区二区视