(Ⅱ)由不等式,得
,
==
.
………………………………………6分
∴,……………………………………………………………………………………4分
于是 an =(an-an-1)+(an-1-an-2)+ … +(a2-a1)+ a1
∴,因此數列{ an-an-1
}是以a2-a1
= 1為首項,
為公比的等比數列,
21.(Ⅰ)由2 an+1 = 3an-an-1(n≥2),得 2(an+1-an)= an-an-1,
得(-n)2 ≤8,解得
≤n≤3
.………………………………………………………………12分
∴ 只須 (代入上式,
要使函數f (x) =在R上單調遞增,只須
f ′ (x)≥0在R上恒成立,
即 mn + 1 = 4,得 mn = 3.……………………………………………………………………………9分
(Ⅱ)由已知有 f ′(0)= mn + 1,所以 =
= f ′(0)= 4,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com